BSM Real-Time Behavior Predictor (Conceptual)

Note: This is a theoretical design document. No actual implementation exists. This specification demonstrates how the Behavioral State Model could be applied to real-time behavior prediction with streaming data processing and adaptive learning capabilities.

System Architecture

graph TB
    A[User Events Stream] --> B[State Detector]
    B --> C[BSM Calculator]
    C --> D[Prediction Engine]
    D --> E[Intervention Trigger]
    E --> F[Outcome Tracker]
    F --> G[Model Updater]
    G --> C
    
    H[Historical Data] --> I[State Profiler]
    I --> C
    
    J[Context Stream] --> K[Environment Monitor]
    K --> C

Core Implementation

Real-Time State Detection

import numpy as np
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import asyncio
from datetime import datetime
import json

@dataclass
class BehavioralState:
    """Complete behavioral state at a moment in time"""
    timestamp: datetime
    user_id: str
    personality: float  # 0-10 scale
    perception: float
    emotions: float
    abilities: float
    social_status: float
    motivations: float
    social_environment: float
    physical_environment: float
    
    @property
    def identity_score(self) -> float:
        """Calculate identity component score"""
        return (self.personality + self.perception + self.emotions + 
                self.abilities + self.social_status + self.motivations) / 6
    
    @property
    def environment_score(self) -> float:
        """Calculate environment component score"""
        return (self.social_environment + self.physical_environment) / 2
    
    @property
    def minimum_component(self) -> Tuple[str, float]:
        """Find the limiting component"""
        components = {
            'personality': self.personality,
            'perception': self.perception,
            'emotions': self.emotions,
            'abilities': self.abilities,
            'social_status': self.social_status,
            'motivations': self.motivations,
            'social_environment': self.social_environment,
            'physical_environment': self.physical_environment
        }
        return min(components.items(), key=lambda x: x[1])
    
    def to_vector(self) -> np.ndarray:
        """Convert to numpy vector for ML operations"""
        return np.array([
            self.personality, self.perception, self.emotions,
            self.abilities, self.social_status, self.motivations,
            self.social_environment, self.physical_environment
        ])

class BSMRealTimePredictor:
    """Real-time behavior prediction using Behavioral State Model"""
    
    def __init__(self, update_frequency_seconds: int = 1):
        self.update_frequency = update_frequency_seconds
        self.state_buffer = {}  # user_id -> list of recent states
        self.prediction_cache = {}
        self.component_weights = self._initialize_weights()
        self.behavior_thresholds = {}
        self.is_running = False
        
    def _initialize_weights(self) -> Dict[str, Dict[str, float]]:
        """Initialize domain-specific component weights"""
        return {
            'default': {
                'personality': 0.15,
                'perception': 0.15,
                'emotions': 0.10,
                'abilities': 0.15,
                'social_status': 0.10,
                'motivations': 0.15,
                'social_environment': 0.10,
                'physical_environment': 0.10
            },
            'healthcare': {
                'personality': 0.10,
                'perception': 0.20,  # Beliefs about treatment crucial
                'emotions': 0.15,    # Emotional state affects adherence
                'abilities': 0.15,
                'social_status': 0.05,
                'motivations': 0.20,  # Motivation critical for health behaviors
                'social_environment': 0.10,
                'physical_environment': 0.05
            },
            'ecommerce': {
                'personality': 0.20,  # Shopping preferences important
                'perception': 0.15,
                'emotions': 0.15,    # Impulse buying
                'abilities': 0.10,    # Financial ability
                'social_status': 0.15, # Status signaling
                'motivations': 0.10,
                'social_environment': 0.10,
                'physical_environment': 0.05
            }
        }
    
    async def start_prediction_stream(self):
        """Start the real-time prediction service"""
        self.is_running = True
        await asyncio.gather(
            self._process_state_updates(),
            self._generate_predictions(),
            self._monitor_drift()
        )
    
    async def _process_state_updates(self):
        """Process incoming state updates"""
        while self.is_running:
            # In production, this would connect to Kafka/Kinesis
            updates = await self._fetch_state_updates()
            
            for update in updates:
                user_id = update['user_id']
                new_state = self._calculate_current_state(update)
                
                # Update buffer
                if user_id not in self.state_buffer:
                    self.state_buffer[user_id] = []
                
                self.state_buffer[user_id].append(new_state)
                
                # Keep only recent states (last 100)
                if len(self.state_buffer[user_id]) > 100:
                    self.state_buffer[user_id].pop(0)
            
            await asyncio.sleep(self.update_frequency)
    
    def _calculate_current_state(self, update: Dict) -> BehavioralState:
        """Calculate current behavioral state from update"""
        # Extract component scores from various data sources
        return BehavioralState(
            timestamp=datetime.now(),
            user_id=update['user_id'],
            personality=self._extract_personality(update),
            perception=self._extract_perception(update),
            emotions=self._extract_emotions(update),
            abilities=self._extract_abilities(update),
            social_status=self._extract_social_status(update),
            motivations=self._extract_motivations(update),
            social_environment=self._extract_social_environment(update),
            physical_environment=self._extract_physical_environment(update)
        )
    
    def predict_behavior_likelihood(
        self, 
        user_id: str, 
        behavior: str, 
        domain: str = 'default'
    ) -> Dict:
        """Predict likelihood of specific behavior"""
        if user_id not in self.state_buffer or not self.state_buffer[user_id]:
            return {'error': 'No state data available'}
        
        current_state = self.state_buffer[user_id][-1]
        weights = self.component_weights.get(domain, self.component_weights['default'])
        
        # Calculate behavior-specific scores
        behavior_scores = self._calculate_behavior_scores(behavior, current_state)
        
        # Apply minimum component rule
        min_component, min_score = current_state.minimum_component
        if min_score < 3:  # Critical threshold
            return {
                'likelihood': 0.05,
                'limiting_factor': min_component,
                'limiting_score': min_score,
                'recommendation': f'Address {min_component} (current: {min_score}/10)'
            }
        
        # Calculate weighted likelihood
        likelihood = sum(
            behavior_scores[comp] * weights[comp] 
            for comp in behavior_scores
        ) / 10
        
        # Apply behavior-specific thresholds
        threshold = self.behavior_thresholds.get(behavior, 0.5)
        
        return {
            'likelihood': likelihood,
            'will_perform': likelihood > threshold,
            'confidence': self._calculate_confidence(user_id, behavior),
            'state_scores': behavior_scores,
            'recommendations': self._generate_recommendations(behavior_scores)
        }
    
    def _calculate_behavior_scores(
        self, 
        behavior: str, 
        state: BehavioralState
    ) -> Dict[str, float]:
        """Calculate behavior-specific component scores"""
        # In production, these would be learned from data
        behavior_profiles = {
            'purchase': {
                'personality': lambda s: s.personality * 1.2 if s.personality > 6 else s.personality * 0.8,
                'perception': lambda s: s.perception,
                'emotions': lambda s: min(10, s.emotions * 1.5) if s.emotions > 5 else s.emotions,
                'abilities': lambda s: s.abilities,
                'social_status': lambda s: s.social_status * 1.1,
                'motivations': lambda s: s.motivations,
                'social_environment': lambda s: s.social_environment,
                'physical_environment': lambda s: s.physical_environment
            },
            'exercise': {
                'personality': lambda s: s.personality,
                'perception': lambda s: s.perception * 1.2,
                'emotions': lambda s: s.emotions * 0.9 if s.emotions < 4 else s.emotions,
                'abilities': lambda s: s.abilities * 1.3,
                'social_status': lambda s: s.social_status,
                'motivations': lambda s: s.motivations * 1.4,
                'social_environment': lambda s: s.social_environment * 1.2,
                'physical_environment': lambda s: s.physical_environment * 1.5
            }
        }
        
        profile = behavior_profiles.get(behavior, {})
        scores = {}
        
        for component in ['personality', 'perception', 'emotions', 'abilities', 
                         'social_status', 'motivations', 'social_environment', 
                         'physical_environment']:
            base_score = getattr(state, component)
            if component in profile:
                scores[component] = min(10, profile[component](state))
            else:
                scores[component] = base_score
        
        return scores
    
    async def _generate_predictions(self):
        """Generate continuous predictions for all tracked users"""
        while self.is_running:
            predictions = {}
            
            for user_id in self.state_buffer:
                user_predictions = {}
                
                # Predict likelihood for registered behaviors
                for behavior in self.get_tracked_behaviors():
                    prediction = self.predict_behavior_likelihood(user_id, behavior)
                    user_predictions[behavior] = prediction
                
                predictions[user_id] = user_predictions
            
            # Update cache
            self.prediction_cache = predictions
            
            # Trigger interventions for high-likelihood behaviors
            await self._trigger_interventions(predictions)
            
            await asyncio.sleep(self.update_frequency)
    
    async def _trigger_interventions(self, predictions: Dict):
        """Trigger interventions based on predictions"""
        interventions = []
        
        for user_id, user_predictions in predictions.items():
            for behavior, prediction in user_predictions.items():
                if prediction.get('likelihood', 0) > 0.8:
                    intervention = {
                        'user_id': user_id,
                        'behavior': behavior,
                        'type': 'encourage',
                        'trigger': self._select_optimal_trigger(prediction)
                    }
                    interventions.append(intervention)
                elif prediction.get('likelihood', 0) < 0.3:
                    # Identify barriers and suggest modifications
                    intervention = {
                        'user_id': user_id,
                        'behavior': behavior,
                        'type': 'enable',
                        'modifications': prediction.get('recommendations', [])
                    }
                    interventions.append(intervention)
        
        # Send interventions to execution system
        if interventions:
            await self._execute_interventions(interventions)

Advanced Features

State Trajectory Analysis

class StateTrajectoryAnalyzer:
    """Analyze behavioral state trajectories over time"""
    
    def __init__(self):
        self.trajectory_patterns = {}
        self.transition_model = self._build_transition_model()
    
    def analyze_trajectory(
        self, 
        states: List[BehavioralState], 
        target_behavior: str
    ) -> Dict:
        """Analyze state trajectory towards target behavior"""
        if len(states) < 2:
            return {'error': 'Insufficient state history'}
        
        # Calculate state velocity (rate of change)
        velocities = []
        for i in range(1, len(states)):
            prev_vector = states[i-1].to_vector()
            curr_vector = states[i].to_vector()
            time_delta = (states[i].timestamp - states[i-1].timestamp).total_seconds()
            
            velocity = (curr_vector - prev_vector) / time_delta
            velocities.append(velocity)
        
        # Analyze trajectory direction
        avg_velocity = np.mean(velocities, axis=0)
        
        # Project future state
        last_state = states[-1]
        projected_state = last_state.to_vector() + (avg_velocity * 3600)  # 1 hour projection
        
        # Calculate convergence to optimal state for behavior
        optimal_state = self._get_optimal_state(target_behavior)
        current_distance = np.linalg.norm(last_state.to_vector() - optimal_state)
        projected_distance = np.linalg.norm(projected_state - optimal_state)
        
        is_converging = projected_distance < current_distance
        
        return {
            'current_state': last_state,
            'state_velocity': avg_velocity.tolist(),
            'projected_state_1h': projected_state.tolist(),
            'is_converging': is_converging,
            'convergence_rate': (current_distance - projected_distance) / current_distance,
            'estimated_time_to_behavior': self._estimate_time_to_behavior(
                last_state, avg_velocity, optimal_state
            ),
            'trajectory_stability': np.std(velocities),
            'recommendations': self._generate_trajectory_recommendations(
                last_state, avg_velocity, optimal_state
            )
        }
    
    def _estimate_time_to_behavior(
        self, 
        current: BehavioralState, 
        velocity: np.ndarray, 
        target: np.ndarray
    ) -> Optional[float]:
        """Estimate time until behavioral state reaches threshold"""
        if np.linalg.norm(velocity) < 0.001:  # Nearly stationary
            return None
        
        # Simple linear projection (could use more sophisticated models)
        distance = np.linalg.norm(current.to_vector() - target)
        speed = np.linalg.norm(velocity)
        
        # Check if moving towards target
        direction = target - current.to_vector()
        if np.dot(velocity, direction) <= 0:  # Moving away
            return None
        
        return distance / speed  # Time in seconds

Adaptive Learning System

class AdaptiveBSMModel:
    """Self-improving BSM model based on outcome feedback"""
    
    def __init__(self):
        self.component_importance = defaultdict(lambda: defaultdict(float))
        self.prediction_history = []
        self.learning_rate = 0.01
    
    async def learn_from_outcome(
        self, 
        prediction: Dict, 
        actual_outcome: bool
    ):
        """Update model based on prediction accuracy"""
        error = float(actual_outcome) - prediction['likelihood']
        
        # Update component importance weights
        state_scores = prediction['state_scores']
        for component, score in state_scores.items():
            # Gradient descent update
            gradient = error * score / 10
            self.component_importance[prediction['behavior']][component] += (
                self.learning_rate * gradient
            )
        
        # Store for analysis
        self.prediction_history.append({
            'prediction': prediction,
            'outcome': actual_outcome,
            'error': error,
            'timestamp': datetime.now()
        })
        
        # Periodic model evaluation
        if len(self.prediction_history) % 100 == 0:
            await self._evaluate_model_performance()
    
    def get_adapted_weights(self, behavior: str) -> Dict[str, float]:
        """Get learned weights for specific behavior"""
        base_weights = {
            'personality': 0.125,
            'perception': 0.125,
            'emotions': 0.125,
            'abilities': 0.125,
            'social_status': 0.125,
            'motivations': 0.125,
            'social_environment': 0.125,
            'physical_environment': 0.125
        }
        
        # Apply learned adjustments
        for component in base_weights:
            adjustment = self.component_importance[behavior][component]
            base_weights[component] = max(0, min(1, base_weights[component] + adjustment))
        
        # Normalize
        total = sum(base_weights.values())
        return {k: v/total for k, v in base_weights.items()}

Integration Examples

Streaming Data Pipeline

# Kafka integration for real-time state updates
from kafka import KafkaConsumer, KafkaProducer
import json

class BSMStreamProcessor:
    def __init__(self, kafka_config):
        self.consumer = KafkaConsumer(
            'user-events',
            'context-updates',
            bootstrap_servers=kafka_config['servers'],
            value_deserializer=lambda m: json.loads(m.decode('utf-8'))
        )
        self.producer = KafkaProducer(
            bootstrap_servers=kafka_config['servers'],
            value_serializer=lambda v: json.dumps(v).encode('utf-8')
        )
        self.predictor = BSMRealTimePredictor()
    
    async def process_stream(self):
        """Process streaming events and generate predictions"""
        async for message in self.consumer:
            if message.topic == 'user-events':
                await self._process_user_event(message.value)
            elif message.topic == 'context-updates':
                await self._process_context_update(message.value)
            
            # Generate predictions
            predictions = await self.predictor.get_current_predictions()
            
            # Publish high-confidence predictions
            for user_id, behaviors in predictions.items():
                for behavior, prediction in behaviors.items():
                    if prediction['likelihood'] > 0.7:
                        self.producer.send('behavior-predictions', {
                            'user_id': user_id,
                            'behavior': behavior,
                            'prediction': prediction,
                            'timestamp': datetime.now().isoformat()
                        })

REST API Endpoints

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel

app = FastAPI(title="BSM Real-Time Predictor API")

class StateUpdate(BaseModel):
    user_id: str
    component: str
    value: float
    metadata: Optional[Dict] = None

class PredictionRequest(BaseModel):
    user_id: str
    behavior: str
    domain: str = 'default'

@app.post("/state/update")
async def update_behavioral_state(update: StateUpdate):
    """Update a specific component of user's behavioral state"""
    try:
        predictor.update_component(
            update.user_id,
            update.component,
            update.value,
            update.metadata
        )
        return {"status": "updated", "component": update.component}
    except Exception as e:
        raise HTTPException(status_code=400, detail=str(e))

@app.get("/predict/{user_id}/{behavior}")
async def get_behavior_prediction(
    user_id: str, 
    behavior: str, 
    domain: str = 'default'
):
    """Get real-time behavior prediction"""
    prediction = predictor.predict_behavior_likelihood(user_id, behavior, domain)
    
    if 'error' in prediction:
        raise HTTPException(status_code=404, detail=prediction['error'])
    
    return prediction

@app.get("/trajectory/{user_id}/{behavior}")
async def analyze_state_trajectory(user_id: str, behavior: str):
    """Analyze user's behavioral state trajectory"""
    analyzer = StateTrajectoryAnalyzer()
    states = predictor.get_state_history(user_id)
    
    if not states:
        raise HTTPException(status_code=404, detail="No state history found")
    
    return analyzer.analyze_trajectory(states, behavior)

@app.websocket("/ws/predictions/{user_id}")
async def websocket_predictions(websocket: WebSocket, user_id: str):
    """WebSocket endpoint for real-time prediction updates"""
    await websocket.accept()
    
    try:
        while True:
            # Send predictions every second
            predictions = predictor.get_user_predictions(user_id)
            await websocket.send_json(predictions)
            await asyncio.sleep(1)
    except WebSocketDisconnect:
        pass

Performance Optimization

State Caching Strategy

class OptimizedStateCache:
    """High-performance state caching with TTL and compression"""
    
    def __init__(self, max_size: int = 10000, ttl_seconds: int = 3600):
        self.cache = {}
        self.max_size = max_size
        self.ttl = ttl_seconds
        self.access_counts = defaultdict(int)
        self.last_cleanup = datetime.now()
    
    def set(self, key: str, state: BehavioralState):
        """Store state with automatic eviction"""
        if len(self.cache) >= self.max_size:
            self._evict_lru()
        
        self.cache[key] = {
            'state': state,
            'timestamp': datetime.now(),
            'compressed': self._compress_state(state)
        }
    
    def get(self, key: str) -> Optional[BehavioralState]:
        """Retrieve state with TTL check"""
        if key not in self.cache:
            return None
        
        entry = self.cache[key]
        if (datetime.now() - entry['timestamp']).seconds > self.ttl:
            del self.cache[key]
            return None
        
        self.access_counts[key] += 1
        return entry['state']
    
    def _compress_state(self, state: BehavioralState) -> bytes:
        """Compress state for memory efficiency"""
        import zlib
        data = state.to_vector().tobytes()
        return zlib.compress(data, level=6)

Monitoring and Observability

# Prometheus metrics for monitoring
from prometheus_client import Counter, Histogram, Gauge

# Metrics
prediction_counter = Counter('bsm_predictions_total', 'Total predictions made')
prediction_latency = Histogram('bsm_prediction_duration_seconds', 'Prediction latency')
active_states = Gauge('bsm_active_states', 'Number of active behavioral states')
component_scores = Histogram(
    'bsm_component_scores', 
    'Distribution of component scores',
    ['component', 'behavior']
)

# Grafana dashboard config
dashboard_config = {
    "dashboard": {
        "title": "BSM Real-Time Predictor",
        "panels": [
            {
                "title": "Prediction Rate",
                "targets": [{"expr": "rate(bsm_predictions_total[5m])"}]
            },
            {
                "title": "Component Score Distribution",
                "targets": [{"expr": "histogram_quantile(0.5, bsm_component_scores)"}]
            },
            {
                "title": "Active Users",
                "targets": [{"expr": "bsm_active_states"}]
            }
        ]
    }
}

Deployment Guide

Docker Configuration

FROM python:3.9-slim

WORKDIR /app

COPY requirements.txt .
RUN pip install -r requirements.txt

COPY . .

CMD ["uvicorn", "bsm_api:app", "--host", "0.0.0.0", "--port", "8000"]

Kubernetes Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
  name: bsm-predictor
spec:
  replicas: 3
  selector:
    matchLabels:
      app: bsm-predictor
  template:
    metadata:
      labels:
        app: bsm-predictor
    spec:
      containers:
      - name: predictor
        image: bsm-predictor:latest
        ports:
        - containerPort: 8000
        env:
        - name: KAFKA_BROKERS
          value: "kafka:9092"
        resources:
          requests:
            memory: "512Mi"
            cpu: "500m"
          limits:
            memory: "1Gi"
            cpu: "1000m"
---
apiVersion: v1
kind: Service
metadata:
  name: bsm-predictor-service
spec:
  selector:
    app: bsm-predictor
  ports:
  - port: 80
    targetPort: 8000
  type: LoadBalancer

Next Steps


Licensing: This specification is protected under the Behavioral Strategy Specification License (BSSL). Commercial use requires explicit licensing. See full licensing terms for details.

Attribution: Based on the Behavioral State Model by Jason Hreha. Learn more at The Behavioral Scientist.

← Back to Computational