BSM-Behavioral Strategy Integration Ontology

This ontology maps the relationships between the Behavioral State Model and the Behavioral Strategy framework, providing a computational model for integration.

Visual Ontology

graph TB
    subgraph "Behavioral State Model"
        BSM[Behavioral State]
        BSM --> P[Personality]
        BSM --> PE[Perception]
        BSM --> E[Emotions]
        BSM --> A[Abilities]
        BSM --> SS[Social Status]
        BSM --> M[Motivations]
        BSM --> SE[Social Environment]
        BSM --> PHE[Physical Environment]
        
        ID[Identity] --> P
        ID --> PE
        ID --> E
        ID --> A
        ID --> SS
        ID --> M
        
        ENV[Environment] --> SE
        ENV --> PHE
    end
    
    subgraph "Behavioral Strategy Framework"
        BS[Behavioral Strategy]
        BS --> PMF[Problem Market Fit]
        BS --> BMF[Behavior Market Fit]
        BS --> SMF[Solution Market Fit]
        BS --> PMFB[Product Market Fit]
        
        DRIVE[DRIVE Framework]
        DRIVE --> D[Define]
        DRIVE --> R[Research]
        DRIVE --> I[Integrate]
        DRIVE --> V[Verify]
        DRIVE --> EN[Enhance]
    end
    
    subgraph "Integration Points"
        PMF -.-> PE
        PMF -.-> M
        PMF -.-> E
        
        BMF -.-> A
        BMF -.-> P
        BMF -.-> SE
        BMF -.-> PHE
        
        SMF -.-> A
        SMF -.-> PE
        SMF -.-> M
        
        D -.-> BSM
        R -.-> ID
        I -.-> ENV
        V -.-> BSM
        EN -.-> BSM
    end
    
    style BSM fill:#f9f,stroke:#333,stroke-width:4px
    style BS fill:#bbf,stroke:#333,stroke-width:4px

Computational Ontology

RDF/OWL Representation

@prefix bsm: <https://behavioralstrategy.com/ontology/bsm#> .
@prefix bs: <https://behavioralstrategy.com/ontology/bs#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

# Behavioral State Model Classes
bsm:BehavioralState a owl:Class ;
    rdfs:label "Behavioral State" ;
    rdfs:comment "A complete behavioral state at a moment in time" .

bsm:IdentityComponent a owl:Class ;
    rdfs:label "Identity Component" ;
    rdfs:subClassOf bsm:StateComponent .

bsm:EnvironmentComponent a owl:Class ;
    rdfs:label "Environment Component" ;
    rdfs:subClassOf bsm:StateComponent .

# BSM Components
bsm:Personality a owl:Class ;
    rdfs:subClassOf bsm:IdentityComponent ;
    bs:influencesFit bs:BehaviorMarketFit .

bsm:Perception a owl:Class ;
    rdfs:subClassOf bsm:IdentityComponent ;
    bs:influencesFit bs:ProblemMarketFit, bs:SolutionMarketFit .

bsm:Emotions a owl:Class ;
    rdfs:subClassOf bsm:IdentityComponent ;
    bs:influencesFit bs:ProblemMarketFit .

bsm:Abilities a owl:Class ;
    rdfs:subClassOf bsm:IdentityComponent ;
    bs:influencesFit bs:BehaviorMarketFit, bs:SolutionMarketFit .

bsm:SocialStatus a owl:Class ;
    rdfs:subClassOf bsm:IdentityComponent ;
    bs:influencesFit bs:BehaviorMarketFit .

bsm:Motivations a owl:Class ;
    rdfs:subClassOf bsm:IdentityComponent ;
    bs:influencesFit bs:ProblemMarketFit, bs:SolutionMarketFit .

bsm:SocialEnvironment a owl:Class ;
    rdfs:subClassOf bsm:EnvironmentComponent ;
    bs:influencesFit bs:BehaviorMarketFit .

bsm:PhysicalEnvironment a owl:Class ;
    rdfs:subClassOf bsm:EnvironmentComponent ;
    bs:influencesFit bs:BehaviorMarketFit .

# Behavioral Strategy Classes
bs:BehavioralStrategy a owl:Class ;
    rdfs:label "Behavioral Strategy" .

bs:FourFitHierarchy a owl:Class ;
    rdfs:subClassOf bs:BehavioralStrategy .

bs:ProblemMarketFit a owl:Class ;
    rdfs:subClassOf bs:FourFitHierarchy ;
    bsm:requiredComponents bsm:Perception, bsm:Motivations, bsm:Emotions .

bs:BehaviorMarketFit a owl:Class ;
    rdfs:subClassOf bs:FourFitHierarchy ;
    bsm:requiredComponents bsm:Abilities, bsm:Personality, 
                           bsm:SocialEnvironment, bsm:PhysicalEnvironment .

bs:SolutionMarketFit a owl:Class ;
    rdfs:subClassOf bs:FourFitHierarchy ;
    bsm:requiredComponents bsm:Abilities, bsm:Perception, bsm:Motivations .

# Properties
bsm:hasComponent a owl:ObjectProperty ;
    rdfs:domain bsm:BehavioralState ;
    rdfs:range bsm:StateComponent .

bsm:componentScore a owl:DatatypeProperty ;
    rdfs:domain bsm:StateComponent ;
    rdfs:range xsd:decimal .

bs:influencesFit a owl:ObjectProperty ;
    rdfs:domain bsm:StateComponent ;
    rdfs:range bs:FourFitHierarchy .

JSON-LD Implementation

{
  "@context": {
    "bsm": "https://behavioralstrategy.com/ontology/bsm#",
    "bs": "https://behavioralstrategy.com/ontology/bs#",
    "componentScore": {
      "@id": "bsm:componentScore",
      "@type": "@id"
    },
    "influencesFit": {
      "@id": "bs:influencesFit",
      "@type": "@id"
    }
  },
  "@graph": [
    {
      "@id": "bsm:BehavioralState",
      "@type": "Class",
      "label": "Behavioral State",
      "hasComponents": [
        "bsm:Personality",
        "bsm:Perception",
        "bsm:Emotions",
        "bsm:Abilities",
        "bsm:SocialStatus",
        "bsm:Motivations",
        "bsm:SocialEnvironment",
        "bsm:PhysicalEnvironment"
      ]
    },
    {
      "@id": "bs:BehaviorMarketFit",
      "@type": "Class",
      "requiredBSMComponents": [
        {
          "component": "bsm:Abilities",
          "minScore": 6,
          "weight": 0.25
        },
        {
          "component": "bsm:Personality",
          "minScore": 5,
          "weight": 0.20
        },
        {
          "component": "bsm:SocialEnvironment",
          "minScore": 4,
          "weight": 0.15
        },
        {
          "component": "bsm:PhysicalEnvironment",
          "minScore": 4,
          "weight": 0.15
        }
      ]
    }
  ]
}

Mapping Functions

BSM to Problem Market Fit

def map_bsm_to_pmf(behavioral_state: BehavioralState) -> Dict[str, float]:
    """
    Map BSM components to Problem Market Fit assessment
    """
    return {
        'problem_perception': behavioral_state.perception,
        'problem_urgency': (behavioral_state.emotions * 0.5 + 
                           behavioral_state.motivations * 0.5),
        'solution_seeking': behavioral_state.motivations,
        'pmf_score': calculate_pmf_from_bsm(behavioral_state)
    }

def calculate_pmf_from_bsm(state: BehavioralState) -> float:
    """
    Calculate Problem Market Fit score from BSM components
    
    PMF = f(Perception, Emotions, Motivations)
    """
    weights = {
        'perception': 0.40,  # Problem awareness and beliefs
        'emotions': 0.30,    # Emotional urgency
        'motivations': 0.30  # Drive to find solution
    }
    
    score = (
        state.perception * weights['perception'] +
        state.emotions * weights['emotions'] +
        state.motivations * weights['motivations']
    )
    
    return min(10, score)

BSM to Behavior Market Fit

def map_bsm_to_bmf(behavioral_state: BehavioralState, 
                   target_behavior: str) -> Dict[str, float]:
    """
    Map BSM components to Behavior Market Fit assessment
    """
    behavior_requirements = get_behavior_requirements(target_behavior)
    
    component_fits = {
        'ability_fit': (behavioral_state.abilities / 
                       behavior_requirements['ability_needed']),
        'personality_fit': calculate_personality_behavior_fit(
            behavioral_state.personality, 
            behavior_requirements['personality_profile']
        ),
        'environment_fit': (
            behavioral_state.social_environment * 0.5 +
            behavioral_state.physical_environment * 0.5
        ) / behavior_requirements['environment_support_needed'],
        'motivation_behavior_alignment': calculate_motivation_alignment(
            behavioral_state.motivations,
            behavior_requirements['reward_structure']
        )
    }
    
    # Apply minimum component rule from BSM
    min_fit = min(component_fits.values())
    avg_fit = sum(component_fits.values()) / len(component_fits)
    
    return {
        'bmf_score': avg_fit * 10,
        'minimum_component_fit': min_fit,
        'component_breakdown': component_fits,
        'will_perform': min_fit > 0.5  # BSM rule: all components must be sufficient
    }

BSM to Solution Market Fit

def map_bsm_to_smf(behavioral_state: BehavioralState,
                   solution_features: Dict) -> Dict[str, float]:
    """
    Map BSM components to Solution Market Fit assessment
    """
    return {
        'ability_solution_match': evaluate_solution_ability_match(
            behavioral_state.abilities,
            solution_features['complexity']
        ),
        'perception_solution_alignment': evaluate_perception_alignment(
            behavioral_state.perception,
            solution_features['value_proposition']
        ),
        'motivation_solution_fit': evaluate_motivation_fit(
            behavioral_state.motivations,
            solution_features['reward_mechanisms']
        ),
        'smf_score': calculate_smf_from_bsm(behavioral_state, solution_features)
    }

Integration Algorithms

Unified Scoring System

class BSMBehavioralStrategyScorer:
    """
    Unified scoring system integrating BSM with Behavioral Strategy
    """
    
    def __init__(self):
        self.component_mappings = self._initialize_mappings()
    
    def _initialize_mappings(self) -> Dict:
        """Define how BSM components map to BS concepts"""
        return {
            'problem_market_fit': {
                'perception': 0.4,
                'emotions': 0.3,
                'motivations': 0.3
            },
            'behavior_market_fit': {
                'personality': 0.15,
                'perception': 0.10,
                'emotions': 0.10,
                'abilities': 0.20,
                'social_status': 0.10,
                'motivations': 0.15,
                'social_environment': 0.10,
                'physical_environment': 0.10
            },
            'solution_market_fit': {
                'perception': 0.25,
                'abilities': 0.35,
                'motivations': 0.25,
                'physical_environment': 0.15
            },
            'product_market_fit': {
                # All components contribute to product-market fit
                'personality': 0.125,
                'perception': 0.125,
                'emotions': 0.125,
                'abilities': 0.125,
                'social_status': 0.125,
                'motivations': 0.125,
                'social_environment': 0.125,
                'physical_environment': 0.125
            }
        }
    
    def calculate_unified_score(
        self, 
        behavioral_state: BehavioralState,
        target_behavior: str,
        solution_features: Optional[Dict] = None
    ) -> Dict:
        """
        Calculate all four fits using BSM components
        """
        state_vector = behavioral_state.to_vector()
        components = [
            'personality', 'perception', 'emotions', 'abilities',
            'social_status', 'motivations', 'social_environment', 
            'physical_environment'
        ]
        state_dict = dict(zip(components, state_vector))
        
        # Calculate each fit
        pmf = self._calculate_fit('problem_market_fit', state_dict)
        bmf = self._calculate_fit('behavior_market_fit', state_dict)
        smf = self._calculate_fit('solution_market_fit', state_dict) if solution_features else None
        pmf_behavioral = self._calculate_fit('product_market_fit', state_dict)
        
        # Apply BSM minimum component rule
        min_component = behavioral_state.minimum_component
        
        return {
            'problem_market_fit': pmf,
            'behavior_market_fit': bmf,
            'solution_market_fit': smf,
            'product_market_fit': pmf_behavioral,
            'limiting_component': min_component[0],
            'limiting_score': min_component[1],
            'overall_viability': self._calculate_overall_viability(
                pmf, bmf, smf, min_component[1]
            )
        }
    
    def _calculate_fit(self, fit_type: str, state_dict: Dict) -> float:
        """Calculate specific fit score from BSM components"""
        mappings = self.component_mappings[fit_type]
        score = sum(
            state_dict[comp] * weight 
            for comp, weight in mappings.items()
        )
        return score
    
    def _calculate_overall_viability(
        self, 
        pmf: float, 
        bmf: float, 
        smf: Optional[float],
        min_component: float
    ) -> str:
        """Determine overall strategic viability"""
        if min_component < 3:
            return "BLOCKED"  # BSM rule: insufficient component
        elif pmf < 5:
            return "NO_PROBLEM_FIT"
        elif bmf < 5:
            return "NO_BEHAVIOR_FIT"
        elif smf and smf < 5:
            return "NO_SOLUTION_FIT"
        elif pmf >= 7 and bmf >= 7:
            return "HIGH_VIABILITY"
        else:
            return "MODERATE_VIABILITY"

DRIVE Framework Integration

BSM-Enhanced DRIVE Implementation

class BSMDriveFramework:
    """DRIVE Framework enhanced with BSM insights"""
    
    def define_with_bsm(self, user_segments: List[Dict]) -> Dict:
        """Define phase using BSM profiling"""
        segment_states = []
        
        for segment in user_segments:
            # Create behavioral state profile
            state_profile = self._create_segment_state_profile(segment)
            segment_states.append({
                'segment': segment,
                'behavioral_state': state_profile,
                'problem_recognition_capacity': self._assess_problem_capacity(state_profile)
            })
        
        return {
            'target_segments': self._prioritize_segments(segment_states),
            'behavioral_requirements': self._extract_requirements(segment_states)
        }
    
    def research_with_bsm(self, target_segments: List[Dict]) -> Dict:
        """Research phase using BSM components"""
        research_plan = {
            'personality_research': {
                'methods': ['psychographic surveys', 'value assessments'],
                'metrics': ['trait distributions', 'value alignments']
            },
            'perception_research': {
                'methods': ['belief mapping', 'mental model interviews'],
                'metrics': ['belief strengths', 'perception gaps']
            },
            'emotion_research': {
                'methods': ['emotion journey mapping', 'trigger analysis'],
                'metrics': ['emotional states', 'emotion-behavior correlations']
            },
            'ability_research': {
                'methods': ['skill assessments', 'capability testing'],
                'metrics': ['ability distributions', 'skill gaps']
            },
            'social_research': {
                'methods': ['social network analysis', 'status mapping'],
                'metrics': ['social influences', 'status impacts']
            },
            'motivation_research': {
                'methods': ['incentive testing', 'motivation profiling'],
                'metrics': ['motivation types', 'reward sensitivities']
            },
            'environment_research': {
                'methods': ['context mapping', 'environment audits'],
                'metrics': ['environmental barriers', 'contextual enablers']
            }
        }
        
        return research_plan
    
    def integrate_with_bsm(
        self, 
        behavioral_states: List[BehavioralState],
        target_behavior: str
    ) -> Dict:
        """Integrate phase using BSM state modification"""
        integration_strategies = []
        
        for state in behavioral_states:
            # Identify components needing modification
            gaps = self._identify_component_gaps(state, target_behavior)
            
            # Design interventions for each gap
            for component, gap in gaps.items():
                strategy = {
                    'component': component,
                    'current_value': getattr(state, component),
                    'target_value': gap['target'],
                    'intervention': self._design_component_intervention(
                        component, gap
                    )
                }
                integration_strategies.append(strategy)
        
        return {
            'intervention_plan': integration_strategies,
            'implementation_sequence': self._sequence_interventions(integration_strategies)
        }
    
    def verify_with_bsm(
        self, 
        initial_states: List[BehavioralState],
        current_states: List[BehavioralState],
        target_behavior: str
    ) -> Dict:
        """Verify phase using BSM state tracking"""
        verification_results = {
            'state_changes': [],
            'behavior_adoption': [],
            'component_improvements': {}
        }
        
        for initial, current in zip(initial_states, current_states):
            # Track component changes
            changes = {
                comp: getattr(current, comp) - getattr(initial, comp)
                for comp in ['personality', 'perception', 'emotions', 
                           'abilities', 'social_status', 'motivations',
                           'social_environment', 'physical_environment']
            }
            
            verification_results['state_changes'].append(changes)
            
            # Verify behavior likelihood improvement
            initial_likelihood = self._calculate_behavior_likelihood(
                initial, target_behavior
            )
            current_likelihood = self._calculate_behavior_likelihood(
                current, target_behavior
            )
            
            verification_results['behavior_adoption'].append({
                'initial': initial_likelihood,
                'current': current_likelihood,
                'improvement': current_likelihood - initial_likelihood
            })
        
        return verification_results
    
    def enhance_with_bsm(
        self, 
        behavioral_states: List[BehavioralState],
        performance_data: Dict
    ) -> Dict:
        """Enhance phase using BSM optimization"""
        enhancement_recommendations = []
        
        # Analyze which components most influence success
        component_impacts = self._analyze_component_impacts(
            behavioral_states, 
            performance_data
        )
        
        # Generate enhancement strategies
        for component, impact in component_impacts.items():
            if impact['influence'] > 0.7:  # High influence component
                recommendation = {
                    'component': component,
                    'current_impact': impact['influence'],
                    'optimization_potential': impact['potential'],
                    'enhancement_strategies': self._generate_enhancements(
                        component, impact
                    )
                }
                enhancement_recommendations.append(recommendation)
        
        return {
            'priority_enhancements': enhancement_recommendations[:3],
            'expected_improvements': self._project_improvements(
                enhancement_recommendations
            )
        }

Practical Applications

Healthcare Example

# Using BSM to improve medication adherence
patient_state = BehavioralState(
    timestamp=datetime.now(),
    user_id="patient_123",
    personality=5,  # Moderate health consciousness
    perception=3,   # Low belief in medication importance
    emotions=7,     # Anxious about health
    abilities=8,    # Capable of taking medication
    social_status=6,  # Family supportive
    motivations=4,   # Low immediate reward perception
    social_environment=7,  # Doctor recommends
    physical_environment=9  # Easy access to pharmacy
)

# Apply integrated scoring
scorer = BSMBehavioralStrategyScorer()
results = scorer.calculate_unified_score(
    patient_state,
    "daily_medication_adherence"
)

print(f"PMF: {results['problem_market_fit']:.1f}")  # 4.9 - Moderate
print(f"BMF: {results['behavior_market_fit']:.1f}")  # 5.7 - Moderate
print(f"Limiting factor: {results['limiting_component']}")  # perception
print(f"Viability: {results['overall_viability']}")  # NO_PROBLEM_FIT

# Intervention recommendation: Focus on perception component
# - Education about medication importance
# - Show clear health outcome data
# - Connect with success stories

E-commerce Example

# Using BSM for purchase behavior prediction
shopper_state = BehavioralState(
    timestamp=datetime.now(),
    user_id="shopper_456",
    personality=8,  # Loves shopping
    perception=7,   # Believes in product value
    emotions=6,     # Positive mood
    abilities=9,    # High purchasing power
    social_status=7,  # Status conscious
    motivations=8,   # Motivated by rewards
    social_environment=6,  # Peer influence moderate
    physical_environment=10  # Easy online access
)

# Predict purchase likelihood
predictor = BSMRealTimePredictor()
prediction = predictor.predict_behavior_likelihood(
    "shopper_456",
    "premium_purchase",
    domain="ecommerce"
)

print(f"Purchase likelihood: {prediction['likelihood']:.1%}")  # 76%
print(f"Will perform: {prediction['will_perform']}")  # True
print(f"Confidence: {prediction['confidence']:.1%}")  # 82%

API Reference

GraphQL Schema

type BehavioralState {
  id: ID!
  userId: String!
  timestamp: DateTime!
  personality: Float!
  perception: Float!
  emotions: Float!
  abilities: Float!
  socialStatus: Float!
  motivations: Float!
  socialEnvironment: Float!
  physicalEnvironment: Float!
  identityScore: Float!
  environmentScore: Float!
  minimumComponent: ComponentScore!
}

type ComponentScore {
  component: String!
  score: Float!
}

type BehavioralStrategyAssessment {
  problemMarketFit: Float!
  behaviorMarketFit: Float!
  solutionMarketFit: Float
  productMarketFit: Float
  limitingComponent: String!
  overallViability: Viability!
}

enum Viability {
  BLOCKED
  NO_PROBLEM_FIT
  NO_BEHAVIOR_FIT
  NO_SOLUTION_FIT
  MODERATE_VIABILITY
  HIGH_VIABILITY
}

type Query {
  getBehavioralState(userId: String!): BehavioralState
  assessBehavioralStrategy(
    userId: String!
    targetBehavior: String!
    solutionFeatures: JSON
  ): BehavioralStrategyAssessment
}

type Mutation {
  updateBehavioralState(
    userId: String!
    component: String!
    value: Float!
  ): BehavioralState
}

Next Steps


Licensing: This ontology specification is protected under the Behavioral Strategy Specification License (BSSL). Commercial use requires explicit licensing. See full licensing terms for details.

Attribution: This ontology integrates Jason Hreha’s Behavioral State Model with the Behavioral Strategy framework.

← Back to Computational